
AC properties of 2D percolation networks: a transfer matrix approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3153

(http://iopscience.iop.org/0305-4470/19/15/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) 3153-3164. Printed in Great Britain 

AC properties of 2~ percolation networks: 
a transfer matrix approach 

J M Laugiert, J P Clerci, G Giraud? and J M Luck$ 
t DCpartement de Physique des Systbmes DCsordonnCs, UniversitC de Provence, Centre 
de St JCr8me, 13397 Marseille Cedex 13, France 
$ Service de Physique Thdorique, CEN Saclay, BP2, 91191 Gif-sur-Yvette Cedex, France 

Received 2 December 1985, in final form 11 February 1986 

Abstract. The frequency dependent AC properties Of 2D random resistor-capacitor mixtures 
are studied through a numerical transfer matrix method. Our algorithm, which generalises 
to the complex impedances used by H e m a n n  er ai, permits a detailed study of the scaling 
laws obeyed by the complex dielectric constant in the critical regime (low frequency and 
concentration close to the geometrical percolation threshold). The duality property of the 
system is extensively used throughout our analysis. Quantities of experimental interest, 
such as the loss angle S and the Cole and Cole plot of the dielectric constant, are also 
examined, both close to and away from the critical point. 

1. Introduction 

This paper is devoted to the frequency dependent (complex) conductivity of conductor- 
insulator random mixtures. As usual, we model such systems by a percolation problem 
on a lattice, where each bond is conducting (resistance Ro) with probability p and 
insulating (capacitance CO) with probability (1 - p )  (Webman et a1 1975, Efros and 
Shklovskii 1976). Since each capacitance has an impedance (iC,,W)-' at frequency 
w/257, the frequency dependent conductivity Z ( p ;  W )  of the system only depends on 
w/w0, where WO' = ROCo is a microscopic timescale. 

The quantity I;( p ;  W )  is the 'density' of complex admittance (inverse impedance) 
of the model on a macroscopic scale, which generalises the usual notion of DC 

conductivity to AC properties. This model interpolates between two well known limits. 
At zero frequency the capacitances are perfect insulators and the conductivity of this 
conductor-insulator mixture is zero whenever p is smaller than the bond percolation 
connectivity threshold p c  and behaves like I; - AR, ' (p  -pJf for p + p z .  Conversely, 
at infinite frequency, the situation is equivalent to that of a normal superconductor 
mixture with a fraction q = 1 - p  of perfectly conducting bonds: the conductivity 
diverges as I; - ( p c  - q)-' when q + p c .  

In the critical region, where both ( p - p , )  and o/o0 are small, the conductivity 
W p ;  W )  (of the infinite system) has been suggested to obey the following scaling 
behaviour: 

where the subscript f refers to the sign of ( p - p , )  (Webman et a1 1975, Efros and 
Shklovskii 1976, Straley 1976, 1977). 
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This scaling law has been justified by Stephen (1978) within a field-theoretical 
approach and an E = 6 - d expansion. The situation is quite similar to that of Q4 theory 
with respect to usual static critical phenomena. In particular, the complex scaling 
functions @* are expected to be regular and universal, up to scale fixing. Moreover, 
X is regular in p at fixed non-zero frequency. Therefore, when their argument is large, 
both scaling functions are asymptotic to 

@+(ix) - @-(ix) - K (ix)" 

where K is some real constant and hence 

~ ( p , ;  U ) =  R;'K eirru'2(w/wO)U (2) 

for w<< w o .  The universal exponents s, t ,  U are related through 

U = t / ( s  + t ) .  (3) 

The power-law behaviour (2) at the percolation threshold has the following remarkable 
outcome: the loss angle 6, commonly defined by 

tan 6 = Re X/Im X (4) 

assumes the universal value 

T S  T 6 =---- 
2 s + t  2 

- ( l - U )  

at p = p c  and low frequency. This result, which clearly involves no adjustable parameter, 
is a simple consequence of the scaling law (1); it seems to have been pointed out only 
recently (Clerc et a1 1984, 1985, Luck 1985). The loss angle has been measured in two 
different experimental situations: mixtures of powders (Laugier 1982) and micro- 
emulsions (van Dijk 1985). The agreement with (5) in the critical region is satisfactory: 
this provides a good check of the validity of the modelling of these materials by 
percolation networks. Up to now, the available quantitative studies of the AC conduc- 
tivity in two and three dimensions have dealt with real space renormalisation group 
methods (Wilkinson et a1 1983, Luck 1985) or with exact solutions on deterministic 
inhomogeneous fractals (Clerc et a1 1984, 1985). 

The aim of the present paper is to examine various properties of the conductivity 
X ( p ;  U ) ,  including a detailed study of the critical region, as well as quantities of 
experimental interest, by a transfer matrix method, which permits a direct treatment 
of the resistor-capacitor model on regular lattices. 

We shall restrict ourselves to the two-dimensional case and use a square lattice. 
Our method can be easily generalised to other regular lattices in two and higher 
dimensions. 

It is well known that the admittance Y of a macroscopic two-dimensional sample 
is expressed in the same units as the complex conductivity Z, since Z is nothing else 
than the admittance of a square of arbitrary size. The (geometrical) self-duality of the 
square lattice implies that the bond percolation threshold pc  is exactly i, the critical 
exponents s and t are equal, U = 4, 6, = 7r/4, and more generally the conductivities at 
dual frequencies w and w $ w  obey an exact duality relation, which can be derived 
from Straley's (1977) work as follows. This author considers the macroscopic conduc- 
tivity Z ( p ,  a ;  q, b )  of a random mixture of conductances a and b which occur with 
probabilities p and q = 1 - p ,  respectively. Making use of simple symmetry and 
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homogeneity considerations, and of the geometrical self-duality of planar graphs, Straley 
obtains the very general identities: 

which will be shown to have remarkable outcomes. If we remember that C ( p ;  U )  is 
a short notation for Z ( p ,  Rol ;  q, iCow) and use equation (6) with a = Rol; b = iCow, 
together with simple real-analyticity properties (Z is changed into its complex conjugate 
whenever a and b occur), we easily get the two very convenient expressions: 

where the asterisk denotes complex conjugation. It is clear from their geometrical 
origin that these remarkable results (equations (6) and (7)) only hold for the conduc- 
tivity I: of the injnite plane and are not valid for the conductivities Zn( p ;  U )  that we 
shall consider hereafter, just because these are defined on strips with periodic transverse 
boundary conditions, which are not geometrically self-dual objects. 

A particularly interesting consequence of self-duality can be derived by inserting 
the scaling law (1) into equation (7b). We obtain a remarkable identity between both 
bulk scaling functions @%, namely 

@+(ix)@-(ix) = ix (7c) 

where x denotes the scaling variable x = ( w / w 0 ) l p  -pel-'-'. In particular, the constant 
K appearing in equation ( 2 )  is equal to 1 for our bond percolation clusters on a square 
lattice. 

We have extended to complex admittances the transfer matrix algorithm introduced 
by Herrmann et a1 (1984). This procedure consists in computing with a very high 
numerical accuracy the longitudinal conductivities En( p ;  w )  on strips of infinite length 
and finite width of n lattice spacings. The extrapolation of these data using finite-size 
scaling laws has been proved to be one of the most efficient ways of computing the 
critical exponent s in two and three dimensions. The result of Herrmann et a1 
concerning the two-dimensional problem is 

(8) 

while the (purely geometrical) correlation length exponent v is exactly equal to $, 
according to den Nijs' (1979) conjecture. 

The exponent ratio t /  v can also be obtained through a transfer matrix approach, 
which consists in computing the transverse conductivities of strips of finite width. This 
method, introduced by Derrida and Vannimenus (1982) and Derrida er a1 (1984), has 
been recently used by Zabolitzky (1984); the result of this last author, t / v =  
0.973 * 0.005, is fully consistent with (8). Throughout the present paper, we shall use 
the values s/ U = t /  v = 0.975 and U = for the critical exponents. 

Our plan is the following. In 9 2 we recall briefly the principles of the transfer 
matrix method, as well as the predictions of finite-size scaling theory. Section 3 presents 
our results concerning different aspects of the AC conductivity for all values of p and 
U ;  we discuss quantities of experimental interest such as the loss angle 8, the dielectric 
constant and its Cole and Cole (1941) plot in the complex E plane. We study in more 
detail the critical region; we test accurately the finite-size scaling behaviour of Zn( p ;  U )  

s/ v = 0.977 * 0.010 
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which involves three relevant parameters, namely ( p - p J ,  i w / w o  and n, and hence 
two reduced variables, of which one is complex. This study therefore reveals a richness 
of phenomena which is not present in most transfer matrix calculations. Section 4 
contains some concluding remarks. It is suggested that the study of the conductivity 
at small but non-zero frequency can yield a very precise numerical determination of 
6,, and hence of the exponent U, in three dimensions. 

2. Method and theoretical framework 

The algorithm we have used is merely an extension to complex admittances of the 
transfer matrix method used by Herrmann et al (1984) in their calculation of the 
superconductivity exponent s in two and three dimensions. Let us describe it briefly 
in the two-dimensional case. Consider a strip of finite length L and width n with 
periodic vertical boundary conditions (in order to minimise finite-size effects). The 
longitudinal conductivity of our resistor-capacitor mixture in such a geometry is 
computed by the following iterative procedure. For a given frequencyf= ~1211,  using 
the standard complex notation, we impose the voltages V = 0 on the first vertical row 
and V, (1 G i S n )  on the Lth vertical row (see figure 1). The (complex) intensities I ,  
which flow through the endpoints of that last row and the voltages V, are related 
through a (complex) impedance matrix Z :  

The rules for updating this impedance matrix are as follows: 
( a )  addition of a horizontal bond of impedance z at line k :  

( b )  addition of a vertical bond of impedance z between lines k and I :  

(no  implicit summation over repeated indices). 

n is then given by the following limit: 
The complex conductivity C , ( p ;  w )  of the strip of infinite length and finite width 

(11) Z , ( p ;  w )  = L-CO lim L / Z i i  

which exists, and is independent of the line label i, with probability one. Since the 
conductivity is a self-averaging quantity, it is not necessary to average C, over different 

Figure 1. Two-dimensional strip of width n, with periodic boundary conditions in the 
vertical direction, showing the definition of the voltages V, and intensities I ,  related through 
the impedance matrix 2. 
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samples. As the statistical fluctuations around the limit (1 1) are of order L-’”, it is 
sufficient to pursue the computation up to a larger value of L in order to diminish the 
error, which can be roughly estimated by dividing the strip into several parts and 
comparing the partial results. 

The cornerstone of the analysis of our numerical data in the critical region will be 
the existence of a finite-size scaling law, valid for Ip -pel << 1, w << wo and n >> 1 simul- 
taneously: 

The general validity of the finite-size scaling ‘hypothesis’ formulated by Fisher (1972) 
has been justified by BrCzin (1982) in the context of usual critical phenomena (44 
theory); it is very likely that it holds in any critical system below its upper critical 
dimensionality (mean-field-like systems exhibit pathological scaling properties, even 
in an infinite geometry, such as (apparent) hyperscaling violations). There exist 
numerous equivalent ways of writing the finite-size scaling law (12). The form we 
have chosen avoids introducing a singular function. 

Let us use the following notation for the arguments of the scaling function F(ix;  y)  

x = ( w / w o ) n ( s + l ) ’ y  Y = ( P  - P c ) n l / ”  (13) 

such that the reduced variables x and y respectively describe the positive half-line and 
the whole real line in physical situations. Since Zn is actually the conductivity of a 
one-dimensional system, it does not have any singularity in w or p (except the trivial 
one-dimensional threshold pc  = l),  and hence the scaling function F(x ;  y)  is regular 
(infinitely differentiable) everywhere, including at x = y = 0. 

We shall show in § 3 several manifestations of the scaling behaviour (12) in our 
finite-size data. The bulk scaling law (1) is of course also contained as a limiting case 
in equation (12), namely, if x > 0 and y (real) go to infinity in such a way that x = ~Iyl”‘ ,  
then (1) is recovered with F(ix;  y)  = lyl‘@*(ip), where +C refers to the sign of y. Let 
us remark that we have lost regularity in y during this procedure. This is not surprising 
if we remember that all physical quantities are expected to have singularities in the 
complex p plane which pinch the real axis at the threshold p c .  

3. Numerical results 

The numerical results obtained by the transfer matrix method described in § 2 will be 
presented in terms of the complex dielectric constant s ( p ;  w ) ,  defined as usual by 

Z( p ;  U )  = i w s (  p ;  w ) .  

s n ( p ;  w )  = C,n”/”G(ix; y )  

F(ix; y)  = ixG(ix; y).  

(14) 
The quantities E,  attached to strips of width n therefore obey the finite-size scaling law: 

(15)  

(16) 

where the scaling functions F and G are simply related through 

First we shall present our results concerning the scaling laws in the critical region, and 
then discuss the whole w and p dependence of quantities such as E and tan 6, which 
then have the advantage of being accessible to experimental measurements. 
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We have used throughout the present work double precision complex routines. The 
data discussed in this paper represent roughly 50 CPU h on the IBM 3081 of CNUSC 
at Montpellier. Since our method has very good convergence properties outside the 
critical region (see $ 3 . 2 ) ,  the essential part of the computer time was spent on the 
two-variable scaling analysis of 0 3.1. 

3.1. Scaling in the critical region 

We have tested in great detail the finite-size scaling law ( 1 5 )  obeyed by the quantities 
E,(  p ;  w ) ,  and extracted the dependence of their scaling function G(ix; y )  with respect 
to its two arguments defined in ( 1 3 ) .  Consider first the model at  the percolation 
threshold of the infinite system. Then E,(  p ;  w )  depends only on one reduced variable: 

w =- n ( s + r ) l v  

WO 

through 

& , ( p c ,  U )  = COn""G(ix; 0). (17)  

Moreover, we know a priori the limiting behaviour of G(ix; 0) when x goes to zero 
and infinity. In the first case (x+O), the function G is regular: 

G ( i x ; O ) = D - i E x +  . . .  ( 1 8 a )  

where D and E are two positive constants. In the x + a  limit, the bulk scaling law 
( 2 )  is recovered as 

( 1 8 b )  

where K = 1 and 6,= 7r/4 are as in equations ( 2 ) - ( 5 ) .  
Figures 2 and 3 respectively show plots of the real and (minus) the imaginary part 

of the scaling function G(ix; 0) against x. The data corresponding to different sizes 
n collapse onto a single curve. Figure 4 shows a complex plotting of the function 
G(ix; 0), which is nothing other than the limiting form of the well known Cole and 
Cole (1941)  plot in the critical regime. The asymptotic expressions (18) are clearly 
observed on the figures. Note in particular the angle 6, = 7r /4  on the limiting Cole-Cole 
plot near the origin, reflecting the bulk scaling law (2)  at the threshold. Our data lead 
to the following approximate values for the amplitudes appearing in equation ( 1 8 a ) :  
D = 2.08, E = 4.0;  the large x behaviour Re G = -1m G = (2x)-'/* shown in figures 2 
and 3 by a broken curve is accurately observed down to x = 1 .  

Consider now the finite-size scaling law ( 1 5 )  where both x and y are non-zero. The 
asymptotic behaviour of Re G and (-Im G )  when lyl+ CO at fixed positive x is 

G(ix; 0) I (ix)- '/*= K-1 e-16cx-1/2 

y++m Re G = B+y-' ( 1 9 a )  

A 
-1m G = - y '  ( 1 9 b )  

X 

y + - m  Re G = ( 1 9 ~ )  

-1m G =  CxlyI-2'-' ( 1 9 d )  

where the amplitudes A, B, are identical to those of the bulk static DC conductivity 
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2 

s 
C 
Y 
,I 

'U 

1 

( 1 2 
X 

Figure 2. Plot of the real part of the scaling function G(ix, 0) of the dielectric constant at 
the percolation threshold against x ( y = O ) .  The symbols denote the values of the strip 
width; 0, n = 6 ;  0, n = 10; 0, n = 16. The length L 3  lo4 is such that statistical errors are 
less than the symbol height. The broken curve shows the asymptotic law (18b). 

and dielectric constant: 

Figures 5 and 6 show plots of the real and (minus) the imaginary part of G(ix; y )  
against y for x = 1. A clear data collapse is still observed. The function (-Im G )  is 
monotonously increasing with y ,  while Re G reaches a maximum G* = 0.83 for y = y* = 
0.3. 

The systematic corrections to the finite-size scaling law (16) are much larger for 
y > 0 than for y < 0, since the difference between the strips and the infinite plane is 
felt more drastically for p > p c ,  where the plane possesses an infinite conducting cluster, 
which cannot exist on a strip. For instance, the DC conductivity of our strips is strictly 
zero for every finite n and every p < 1. 
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k 

Figure 3. Same as figure 2 for minus the imaginary part of the scaling function G(ix; 0). 

1 

G" 

0 

Figure 4. Complex Cole and Cole plot of the scaling function G(ix;  0). The symbols read 
as in figure 2. Note the angle 6, = ~ r / 4  near the origin. 

These unavoidable effects imply that more ambitious quantitative measurements, 
like, for instance, a good determination of the universal amplitude ratio B+/ B- (see 
equations (19 )  and ( 2 0 ) )  from the asymptotic behaviour (19a) - (19c )  of the scaling 
function Re G, would require a considerably larger amount of computer time than we 
found reasonable to spend in the present work. 

3.2. Various dielectric properties 

Our transfer matrix approach is also an efficient tool to predict quantitatively AC 

properties of composite materials. We shall focus our attention on the concentration 
and frequency dependence of the loss angle 6 and the Cole and Cole plot, keeping in 
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Figure 5. Plot of the real part of the scaling function G(ix;  y )  for x = 1 against y. The 
symbols read: 0, n = 10; a, n = 16; *, n = 24. The data have been obtained with La lo4. 
A systematic effect forbids us to get data with reasonable accuracy for y >  1.2 with 
L = 5 x io4. 
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mind that other quantities of experimental or even industrial interest can be computed 
by our method without much effort. 

We consider first the whole w and p dependence of the loss angle 8, defined in 
equation (4). The duality identity ( 7 a )  implies that the values of Z at frequencies w 
and w i / w  have equal phases. We have therefore the following exact result, valid for 
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arbitrary values of p and w :  

S ( p ;  w )  = 6 ( p ;  w&). (21) 

Figure 7 shows a log-log plot of tan 6 against w / w o  for different values of p ,  both 
above and below p c .  Equation (21) implies a mirror symmetry of the curves with 
respect to the y axis. It is clear that our algorithm can only predict accurately the 
properties of the 2~ medium if we use a width n (much) larger than the bulk correlation 
length 6. In the critical region where 6 becomes large, our data need a more refined 
analysis than that in § 3.1. This delicate convergence question explains why figure 7 
does not show data corresponding to values of p too close to the threshold p c .  The 
loss angle 6 exhibits the following characteristics. In the percolating phase ( p  > p c ) ,  
the presence of an infinite cluster of resistors implies that tan 6 grows as w-'  for 
w << wo,  and hence as w for w >> wo,  thanks to the symmetry property (21). Conversely, 
for p < p c ,  tan 6 vanishes like w(resp U - ' )  as w goes to O(resp CO). In the critical region, 
tan 6 develops a plateau at the value tan 7r/4 = 1, according to equations (2)-(5). These 
various behaviours have already been discussed in the framework of real space renor- 
malisation (Luck 1985) and of exactly soluble fractal models (Clerc et a1 1984, 1985); 
the present work is nevertheless the first approach to these properties in a realistic 
geometry. 

The properties of the complex dielectric constant are also usefully visualised by 
the usual Cole and Cole plot, which has already been used in an appropriate scaling 
form in § 3.1. Figure 8 shows this complex plot for different values of p belonging to 
both phases, in units such that Ro= CO= 1. For p = O ,  the plot is reduced to a single 
point, since E = 1 for all frequencies in that limit. Conversely for p = 1, C = 1 and the 

p z 0 . 9  
0.8 
0 .I 

p : 0 3  
0 2  
0 1  

Figure 7. Log-log plot of the tangent of the loss angle S against reduced frequency w / w o .  
Values of p are indicated on the curves. The different asymptotic slopes are discussed in 
the text. 
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E'  

Figure 8. Cole and Cole plot of the complex dielectric constant (in units such that 
R, = CO = 1). Values of p are indicated on the curves. The straight lines ( p  = p c  = $ and 
p = 1 )  are exact results, as well as the quarter of a circle corresponding to w = wo = 1. 

plot becomes the entire positive imaginary axis. The plot associated with the percolation 
threshold p c  = is also exactly known: it is a straight line defined by the angle S, = ~ / 4 ,  
because the self-duality identity (7 b )  implies the simple but remarkable expression: 

~ ( p , ;  w )  = Co(iw/wo)-"2 (22) 

which is clearly valid for all frequencies, since it is once more merely a consequence 
of Straley's identities (6). For O < p < p , ,  the plot is generically a regular curve, 
intersecting twice the real axis at a right angle ( & ( U )  being analytic away from the 
critical point). The abscissae of these intersection points are ~ ( p ;  0) and ~ ( p ;  CO);  

these quantities are reciprocal numbers, according to the identity (6). Except for very 
small values of p,  the Cole and Cole plot is by no means close to being half a circle. 
For p close to p c ,  the plots develop an asymptotically straight part centred around 
w = w o ,  corresponding to the plateau of tan S. The circled points represent the dielectric 
constant at w = w,,. These points are expected to lie on a quarter of a circle, since 
equation (6) implies that I E ( ~ ;  wo)l is equal to unity for all values of p .  This provides 
another non-trivial check of the efficiency and accuracy of our method. For p > p c ,  
the plots extend up to infinity, since the dielectric constant diverges for w + 0 as 

4 P ;  w ) - Z ( p ;  O)/iw 

and reach the origin parallel to the imaginary axis since Z( p ;  03) is also a finite number. 

4. Conclusion 

The variety of the results obtained by the present numerical method shows that AC 

properties of disordered systems can be of great interest from a theoretical, experimental 
and industrial point of view. 

The transfer matrix method of Herrmann et a1 (1984) had been shown by these 
authors to be one of the most efficient ways of computing the critical exponent s 
through DC conductivities. We have seen throughout the present paper that its 
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generalisation to AC phenomena provides numerous accurate results for moderate 
computer time, at least in two dimensions. 

The analysis of our data in the critical region shows excellent agreement with the 
predictions of finite-size scaling theory. In particular we have obtained a satisfactory 
global picture of the complex scaling functions F and G. 

Our study of the frequency and concentration dependence of quantities such as 
tan 6 and the Cole and Cole plot describes detailed properties of the resistor-capacitor 
model in terms of directly measurable quantities. A remarkable effect of randomness 
is the strong p dependence of the Cole and Cole plot and, above all, the existence of 
a straight region due to criticality and characterised by the universal angle 6, (equal 
to ~ / 4  in two dimensions), which also clearly appears in plots of tan 6. Two experi- 
mental groups (Laugier 1982, van Dijk 1985) have pointed out this feature, which has 
permitted them to interpret the electrical properties of their systems in terms of 
percolation models. An analogous phenomenon has been described by Le MChautC 
and Dugast (1983) in electrolytes. 

The extension of the present study to the three-dimensional case is by now in 
progress at UniversitC de Provence. Besides its manifest experimental and industrial 
interest (e.g. screen-printing techniques), the three-dimensional model also provides 
attractive challenges for the theorist (determination of the exponent U ,  amplitude ratios, 
scaling functions). 
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